Roll No.:....

333352(14)

B. E. (Third Semester) Examination, Nov.-Dec. 2021

(New Scheme)

(IT Branch)

DISCRETE STRUCTURES

Time Allowed: Three hours

Maximum Marks: 80

Minimum Pass Marks: 28

Note: Attempt all questions. Part (a) from each question is compulsory and carry 2 marks.

Attempt any two parts (b), (c) & (d) with carries 7 marks each.

Unit-I

(a) Write the converse of the following conditional statement.

"If 2 + 2 = 4 then blood is green."

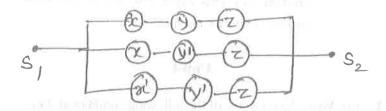
- (b) Define principal conjunctive normal form. Obtain principal conjunctive normal form of $p \wedge q$ by using truth table.
- (c) Let $B = \{1, 5, 7, 35\}$ be the set of positive integers and operations '+' and '.' are defined as follows:

$$a + b = LCM(a, b)$$

$$a \cdot b = \gcd(a, b) + a \in B$$

a unary operation '1' on B defined as a' = 35/a $\forall a \in B$, show that $(B, +, \cdot, 1)$ is a Boolean algebra.

(d) Write the Boolean expression of the following switching circuit in fig. and draw the simplified form of circuit.



Unit-II

- 2. (a) Give an example of a relation which is symmetric and transitive both but not reflexive.
 - (b) Define Cartesian product of two sets. If A, B, C are any three non-empty sets, then

P.T.
$$A \times (B \cup C) = (A \times B) \cup (A \times C)$$
 7

- (c) Define composition function. If the function $f: R \to R$ is defined by $f(x) = x^2 2x 3$ and the function $g: R \to R$ is defined by g(x) = 3x 4, then find $g \circ f(x)$ and $f \circ g(x)$.
- (d) Answer the question for the poset ($\{3, 5, 9, 15, 24, 45\}$, a/b) with respect to divisibility relation
 - (i) Find the maximal elements.
 - (ii) Find the minimal elements.
 - (iii) Is there a greatest and least elements?
 - (iv) Find the upper bounds {3, 5}.
 - (v) Find the least upper bound (sup) {3, 5} if they exists.

2

7

7

2

Unit-III

- 3. (a) Find the order of every element in the multiplicative group $G = \{a, a^2, a^3, a^4, a^5, a^6 = e\}$.
 - (b) State and prove Lagrange's theorem.
 - (c) If R be the additive group of all real numbers and R_t be the multiplicative group of real numbers then show that the following mappings are isomorphism: 7

 $f: R \to R$, defined by $f(x) = e^x + x \in R$

- (d) Define the following: with the same artifugues and the 7
 - (i) Group code
 - (ii) Ring
 - (iii) Integral Domain

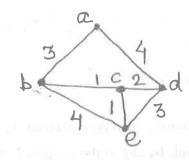
Unit-IV

4. (a) Does there exists a 4-regular graph on 6-vertices, if so construct a graph.

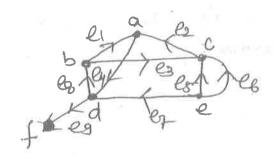
(b) Show that the maximum number of edges in a simple

graph with *n*-vertices is $\frac{n(n-1)}{2}$.

(c) Show that Kruskal's algorithm, find a minimal spanning tree for the graph of fig.



(d) Define incidence matrix for diagram and find the incidence matrix of the following diagram.



7

[6]

Unit-Y

- 5. (a) Find the number of ways of putting 5 letters in five addressed envelope such that no letter is placed in the right envelope.
 - (b) Define principle of mathematical induction. Show

that
$$1+2+3+...+n=\frac{n(n+1)}{2}$$
 by mathematical induction $(n \ge 1)$.

- (c) Find the number of integers between 1 and 250 that are divisible by any of the integers 2, 3, 5 and 7.
- (d) Give that $a_0 = 1$, $a_1 = -2$ and $a_2 = 1$ satisfy the following recurrence relation for $r \ge 3$.

$$a_r + 3 a_{r-1} + 3 a_{r-2} + a_{r-3} = 0$$

Determine a_r .

2